XIII. Addition to Memoir on the Transformation of Elliptic Functions.

By A. Cayley, Sadlerian Professor of Mathematics in the University of Cambridge.

Received February 6,-Read March 7, 1878.

I HAVE recently succeeded in completing a theory considered in my 'Memoir on the Transformation of Elliptic Functions,' Phil. Trans., vol. 164 (1874), pp. 397-456—that of the septic transformation, n=7. We have here

$$\frac{1-y}{1+y} = \frac{1-x}{1+x} \left(\frac{a - \beta x + \gamma x^2 - \delta x^3}{a + \beta x^2 + \gamma x^2 + \delta x^3} \right)^2,$$

a solution of

$$\sqrt{\frac{Mdy}{1 - y^2 \cdot 1 - v^8 y^2}} = \sqrt{\frac{dx}{1 - x^2 \cdot 1 - u^8 x^2}},$$

where $\frac{1}{M} = 1 + \frac{2\beta}{a}$; and the ratios $\alpha : \beta : \gamma : \delta$, and the *uv*-modular equation are determined by the equations

$$u^{14}\alpha^{2} = v^{2}\delta^{2},$$

$$u^{6}(2\alpha\gamma + 2\alpha\beta + \beta^{2}) = v^{2}(\gamma^{2} + 2\gamma\delta + 2\beta\delta),$$

$$\gamma^{2} + 2\beta\gamma + 2\alpha\delta + 2\beta\delta = v^{2}u^{2}(2\alpha\gamma + 2\beta\gamma + 2\alpha\delta + \beta^{2}),$$

$$\delta^{2} + 2\gamma\delta = v^{2}u^{10}(\alpha^{2} + 2\alpha\beta);$$

or, what is the same thing, writing $\alpha=1$, the first equation may be replaced by $\delta=\frac{u^7}{v}$, and then, α , δ having these values, the last three equations determine β , γ and the modular equation. If instead of β we introduce M, by means of the relation $\frac{1}{M}=1+2\beta$, that is $2\beta=\frac{1}{M}-1$, then the last equation gives $2\gamma=u^3v^3\left(\frac{1}{M}-\frac{u^4}{v^4}\right)$; and α , β , γ , δ having these values, we have the residual two equations

$$u^{6}(2\alpha\gamma + 2\alpha\beta + \beta^{2}) = v^{2}(\gamma^{2} + 2\gamma\delta + 2\beta\delta),$$
$$\gamma^{2} + 2\beta\gamma + 2\alpha\delta + \beta\delta = v^{2}u^{2}(2\alpha\gamma + 2\beta\gamma + 2\alpha\delta + \beta^{2}),$$

viz., each of these is a quadric equation in $\frac{1}{M}$; hence eliminating $\frac{1}{M}$, we have the modular equation; and also (linearly) the value of $\frac{1}{M}$, and thence the values of a, β, γ, δ in terms of u, v.

Before going further it is proper to remark that, writing as above $\alpha=1$, then if $\delta=\beta\gamma$, we have

$$1 - \beta x + \gamma x^{2} - \delta x^{3} = (1 - \beta x)(1 + \gamma x^{2}),$$

$$1 + \beta x + \gamma x^{2} + \delta x^{3} = (1 + \beta x)(1 + \gamma x^{2}),$$

and the equation of transformation becomes

$$\frac{1-y}{1+y} = \frac{1-x}{1+x} \left(\frac{1-\beta x}{1+\beta x} \right)^2,$$

viz., this belongs to the cubic transformation. The value of β in the cubic transformation was taken to be $\beta = \frac{u^3}{v}$, but for the present purpose it is necessary to pay attention to an omitted double sign, and write $\beta = \pm \frac{u^3}{v}$; this being so, $\delta = \beta \gamma$, and giving to γ the value $\mp u^4$, δ will have its foregoing value $= \frac{u^7}{v}$. And from the theory of the cubic equation, according as $\beta = \frac{u^3}{v}$ or $= -\frac{u^3}{v}$, the modular equation must be $u^4 - v^4 + 2uv(1 - u^2v^2) = 0$, or $u^4 - v^4 - 2uv(1 - u^2v^2) = 0$.

We thus see à priori, and it is easy to verify that the equations of the septic transformation are satisfied by the values

$$a=1, \beta=\frac{u^3}{v}, \gamma=u^4, \delta=\frac{u^7}{v}, \text{ and } u^4-v^4+2uv(1-u^2v^2)=0;$$

 $a=1, \beta=-\frac{u^3}{v}, \gamma=-u^4, \delta=\frac{u^7}{v}, \text{ and } u^4-v^4-2uv(1-u^2v^2)=0;$

and it hence follows that in obtaining the modular equation for the septic transformation, we shall meet with the factors $u^4 - v^4 \pm 2uv(1 - u^2v^2)$. Writing for shortness $uv = \theta$, these factors are $u^4 - v^4 \pm 2\theta(1 - \theta^2)$, the factor for the proper modular equation is $u^8 + v^8 - \Theta$, where

$$\Theta = 8\theta - 28\theta^2 + 56\theta^3 - 70\theta^4 + 56\theta^5 - 28\theta^6 + 8\theta^7$$

[viz., the equation $(1-u^8)(1-v^8)-(1-uv)^8=0$ is $u^8+v^8-\Theta=0$], and the modular equation as obtained by the elimination from the two quadric equations in fact presents itself in the form

$$(u^4 - v^4 + 2\theta - 2\theta^3)^2(u^4 - v^4 - 2\theta + 2\theta^3)^2(u^8 + v^8 - \Theta) = 0.$$

Proceeding to the investigation, we substitute the values

$$\alpha = 1, \beta = \frac{1}{2} \left(\frac{1}{M} - 1 \right), \gamma = \frac{1}{2} u^3 v^3 \left(\frac{1}{M} - \frac{u^4}{v^4} \right), \delta = \frac{u^7}{v}$$

in the residual two equations, which thus become

$$\frac{1}{M^{2}}(1-v^{8}) + \frac{2}{M}(1-uv)^{3}(1+uv) + \left\{ (1-u^{8}) - 4(1-uv)\left(1+\frac{u^{7}}{v}\right) \right\} = 0,$$

$$\frac{1}{M^{2}}\left\{ -u^{2}v^{2}(1-uv)^{3}(1+uv) \right\} + \frac{2}{M}\left\{ u^{2}v^{2}(1-u^{8}) + \frac{u^{3}}{v}(1+u^{2}v^{2})(u^{4}-v^{4}) \right\} + \left\{ \frac{u^{14}}{v^{2}} + 6\frac{u^{7}}{v}(1-u^{2}v^{2}) - u^{2}v^{2} \right\} = 0,$$

the first of which is given p. 432 of the 'Memoir.' Calling them

$$(a, b, c)(\frac{1}{M}, 1)^2 = 0, (a', b', c')(\frac{1}{M}, 1)^2 = 0,$$

we have

$$\frac{1}{M^2}: \frac{2}{M}: 1 = bc' - b'c : ca' - c'a : ab' - a'b,$$

and the result of the elimination therefore is

$$(ca'-c'a)^2-4(bc'-b'c)(ab'-a'b)=0.$$

Write as before $uv = \theta$. In forming the expressions ca'-c'a, &c., to avoid fractions we must in the first instance introduce the factor v^2 , thus

$$\begin{split} v^2(\text{ca}' - \text{c'a}) &= v\{v(1 - u^8) - 4(1 - \theta)(v + u^7)\}\{ -\theta^2(1 + \theta)(1 - \theta)^3\} \\ &- \{u^{14} + 6u^6\theta(1 - \theta^2) - v^2\theta^2\}\{1 - v^8\}, \\ &= -\theta^2(1 + \theta)(1 - \theta)^3\{v^2(-3 + 4\theta) + u^6(-4\theta + 3\theta^2)\} \\ &- \{u^{14} + 6u^6(\theta - \theta^3) - v^2\theta^2\}(1 - v^8); \end{split}$$

but instead of $\theta^2 v^2$ writing $u^2 v^4$, the expression on the right hand side becomes divisible by u^2 ; and we find

$$\frac{v^{2}}{u^{2}}(ca'-c'a) = -(1+\theta)(1-\theta)^{3}\{v^{4}(-3+4\theta)+u^{4}(-4\theta^{3}+3\theta^{4})\}$$
$$-\{u^{12}+6u^{4}(\theta-\theta^{3})-v^{4}\}(1-v^{8}),$$

and thence

$$-\frac{v^{2}}{u^{3}}(ca'-c'a) = u^{12} + u^{4}(6\theta-10\theta^{3}+11\theta^{4}-6\theta^{5}-8\theta^{6}+10\theta^{7}-4\theta^{8}) + v^{4}(-4+10\theta-8\theta^{2}-6\theta^{3}+11\theta^{4}-10\theta^{5}+6\theta^{7}) + v^{12},$$

and similarly we have

$$\frac{v^{2}}{u^{2}}(bc'-b'c) = u^{12}(5-5\theta+4\theta^{2}-5\theta^{3}+2\theta^{4}) + u^{4}(9\theta-16\theta^{2}+\theta^{3}+10\theta^{4}+\theta^{5}-16\theta^{6}+9\theta^{7}) + v^{4}(2-5\theta+4\theta^{2}-5\theta^{3}+5\theta^{4}),$$

$$\frac{v^{2}}{u^{2}}(ab'-a'b) = u^{4}(\theta+\theta^{3}-\theta^{4}) + v^{4}(2-5\theta+4\theta^{2}+3\theta^{3}-10\theta^{4}+3\theta^{5}+4\theta^{6}-5\theta^{7}+2\theta^{8}) + v^{12}(-1+\theta+\theta^{3});$$

say these values are

$$u^{12} + \rho u^4 + q v^4 + v^{12}$$
, $\lambda u^{12} + \mu u^4 + \nu v^4$, $\rho u^4 + \sigma v^4 + \tau v^{12}$.

The required equation is thus

$$0 = (u^{12} + pu^4 + qv^4 + v^{12})^2 - 4(\lambda u^{12} + \mu u^4 + \nu v^4)(\rho u^4 + \sigma v^4 + \tau v^{12}),$$

viz., the function is

$$\begin{array}{l} u^{24} \\ +u^{16}(2p-4\lambda\rho) \\ +u^{8}\left(2q\theta^{4}\!+\!p^{2}\!-\!4\lambda\sigma\theta^{4}\!-\!4\mu\rho\right) \\ +\left.\left(2\theta^{12}\!+\!2pq\theta^{4}\!-\!4\lambda\tau\theta^{12}\!-\!4\mu\sigma\theta^{4}\!-\!4\nu\rho\theta^{4}\right) \\ +v^{8}\left(2p\theta^{4}\!+\!q^{2}\!-\!4\mu\tau\theta^{4}\!-\!4\nu\sigma\right) \\ +v^{16}\left(2q\!-\!4\nu\tau\right) \\ +v^{24}, \end{array}$$

or say it is

$$=(1, b, c, d, e, f, 1)(u^{24}, u^{16}, u^{8}, 1, v^{8}, v^{16}, v^{24}).$$

Supposing that this has a factor $u^8 - \Theta + v^8$, the form is

$$(u^{16} + Bu^8 + C + Dv^8 + v^{16})(u^8 - \Theta + v^8);$$

and comparing coefficients we have

$$B-\Theta = b,$$

$$C-\Theta B + \theta^{8} = c,$$

$$D\theta^{8} - \Theta C + B\theta^{8} = d,$$

$$\theta^{8} - \Theta D + C = e,$$

$$-\Theta + D = f,$$

where Θ has the before-mentioned value

=
$$(8, -28, +56, -70, +56, -28, +8)(\theta, \theta^2, \theta^3, \theta^4, \theta^5, \theta^6, \theta^7);$$

from the first, second, and fifth equations, $B=b+\Theta$, $C=c+\Theta B-\theta^8$, $D=f+\Theta$; and the third and fourth equations should then be verified identically. Writing down the coefficients of the different powers of θ we find

$$2p = 0 + 12 \quad 0 - 20 + 22 - 12 - 16 + 20 - 8(\theta^{0} \dots \theta^{8})$$

$$-4\lambda \rho = 0 - 20 + 20 - 36 + 60 - 44 + 36 - 28 + 8 \quad ,$$

$$b = 0 - 8 + 20 - 56 + 82 - 56 + 20 - 8 \quad 0 \quad ,$$

$$\Theta = 0 + 8 - 28 + 56 - 70 + 56 - 28 + 8 \quad 0 \quad ,$$

$$\therefore B = 0 \quad 0 - 8 \quad 0 + 12 \quad 0 - 8 \quad 0 \quad 0 \quad ,$$

that is

$$B = -8\theta^2 + 12\theta^4 - 8\theta^6$$
;

and in precisely the same way the fifth equation gives

$$D = -8\theta^2 + 12\theta^4 - 8\theta^6$$

We find similarly C from the second equation: writing down first the coefficients of p^2 , $2q\theta^4$, $-4\lambda\sigma\theta^4$, and $-4\mu\rho$, the sum of these gives the coefficients of c; and then writing underneath these the coefficients of B Θ and of $-\theta^8$, the final sum gives the coefficients of C: the coefficients of each line belong to $(\theta^0, \theta^1, \ldots, \theta^{16})$.

0 0 36
$$0-120+132+28-316+361-20-340+396-144-112+164-80+16$$

 $-8+20-16-12+22-20$ $0+12$
 $-40+140-212+140+80-188+168-92-64+176-164+80-16$
 $-36+64-40+60-72+28$ $0+68-100+36$

$$0 \ 0 \ 0 + 64 - 208 + 352 - 272 - 160 + 463 - 160 - 272 + 352 - 208 + \ 64 \qquad 0 \qquad 0$$

$$0 \ 0 \ 0 - 64 + 224 - 352 + 224 + 160 - 392 + 160 + 224 - 352 + 224 - 64$$
 $0 \ 0 \ 0$

- 1

$$0 \ 0 \ 0 \ 0 + 16 \ 0 - 48 \ 0 + 70 \ 0 - 48 \ 0 + 16 \ 0 \ 0 \ 0$$

that is

$$C = 16\theta^4 - 48\theta^6 + 70\theta^8 - 48\theta^{10} + 16\theta^{12}$$

and in precisely the same way this value of C would be found from the fourth equation. There remains to be verified only the fourth equation $(D+B)\theta^8-\Theta C=d$, that is

$$2\theta^{8}(-8\theta^{2}+12\theta^{4}-8\theta^{6})-\Theta C=(2-4\lambda\tau)\theta^{12}+(2pq-4\mu\sigma-4\nu\rho)\theta^{4},$$

and this can be effected without difficulty.

The factor of the modular equation thus is

$$u^{16} + v^{16} + (-8\theta^2 + 12\theta^4 - 8\theta^6)(u^8 + v^8) + 16\theta^4 - 48\theta^6 + 70\theta^8 - 48\theta^{10} + 16\theta^{12}$$

viz., this is

$$(u^{8}+v^{8})^{2}+(-4\theta^{2}+6\theta^{4}-4\theta^{6})2(u^{8}+v^{8})+16\theta^{4}-48\theta^{6}+68\theta^{8}-48\theta^{10}+16\theta^{12},$$

$$=(u^{8}+v^{8}-4\theta^{2}+6\theta^{4}-4\theta^{6})^{2},$$

$$=\{(u^{4}-v^{4})^{2}-4\theta^{2}(1-\theta^{2})^{2}\}^{2}$$

that is

$$\{u^4-v^4-2\theta(1-\theta^2)\}^2\{u^4-v^4+2\theta(1-\theta^2)\}^2;$$

MDCCCLXXVIII.

or the modular equation is

$$\{u^4-v^4-2\theta(1-\theta^2)\}^2\{u^4-v^4+2\theta(1-\theta^2)\}^2(u^8+v^8-\Theta)=0;$$

viz., the first and second factors belong to the cubic transformation; and we have for the proper modular equation in the septic transformation $u^8+v^8-\Theta=0$, or what is the same thing $(1-u^8)(1-v^8)-(1-\theta)^8=0$, that is $(1-u^8)(1-v^8)-(1-uv)^8=0$, the known result; or as it may also be written $(\theta-u^8)(\theta-v^8)+7\theta^2(1-\theta)^2(1-\theta+\theta^2)^2=0$.

The value of M is given by the foregoing relations

$$\frac{1}{\mathsf{M}^2}: \frac{2}{\mathsf{M}}: 1 = \lambda u^{12} + \mu u^4 + \nu v^4: -(u^{12} + p u^4 + q v^4 + v^{12}): \rho u^4 + \sigma v^4 + \tau v^{12};$$

but these can be, by virtue of the proper modular equation, $u^8+v^8-\Theta=0$, reduced into the form

$$\frac{1}{M^2}: \frac{2}{M}: 1 = 7(\theta - u^8): 14(\theta - 2\theta^2 + 2\theta^3 - \theta^4): -\theta + v^8,$$

viz., the equality of these two sets of ratios depends upon the following identities,

$$\begin{aligned} (-\theta + v^8) (u^{12} + pu^4 + qv^4 + v^{12}) + 14(\theta - 2\theta^2 + 2\theta^3 - \theta^4) (\rho u^4 + \sigma v^4 + \tau v^{12}) \\ &= \{-\theta u^4 + (1-\theta)(-4 - \theta + 5\theta^2 - \theta^3 - 4\theta^4)v^4 + v^{12}\}(u^8 - \Theta + v^8), \\ -7(\theta - u^8) (\rho u^4 + \sigma v^4 + \tau v^{12}) - (\theta - v^8)(\lambda^{12} + \mu u^4 + \nu u^4) \\ &= \{(2\theta + 5\theta^2 + 3\theta^3 - 2\theta^4 - 2\theta^5)u^4 + (2 + 2\theta - 3\theta^2 - 5\theta^3 - 2\theta^4)v^4\}(u^8 - \Theta + v^8), \\ -2(\theta - 2\theta^2 + 2\theta^3 - \theta^4)(\lambda u^{12} + \mu u^4 + \nu u^4) + (u^8 - \theta)(u^{12} + pu^4 + qv^4 + v^{12}) \\ &= \{u^{12} + \theta(1 - \theta)(3 + 5\theta + 3\theta^2)u^4 - \theta v^4\}(u^8 - \Theta + v^8), \end{aligned}$$

which can be verified without difficulty: from the last-mentioned system of values, replacing θ by its value uv, we then have

$$\frac{1}{M^2}: \frac{2}{M}: 1 = 7u(v - u^7): 14uv(1 - uv)(1 - uv + u^2v^2): -v(u - v^7),$$

which agree with the values given p. 482 of the 'Memoir,' and the analytical theory is thus completed.